	NAME
WORKSHOP 9A: Intermolecular Forces	Section

For the first part of this workshop, identify the type of crystal structure (Ionic, Molecular Polar, Molecular Nonpolar, Network-Covalent, or Metallic) present. Then determine the type of binding forces present in each (Ionic Bonds, Covalent Bonds, Metallic Bonds, London Dispersion Forces, Dipole Forces, and/or Hydrogen Bonds).

Substance	Type of Crystal	Type of Binding Force(s)
Ar		
CH₃Cl		
СН₃ОН		
BCl ₃		
CH ₃ OCH ₃		
HF		
Нд		
N ₂		
SiC		
СН₃СООН		
Diamond		

1)	Kr_ Justification:	or Xe
2)	C ₂ H ₅ OH	or CH ₃ OCH ₃
3)	NaF	or MgO
4)	N_2 Justification:	or NO
5)	CH ₄ Justification:	or SiH ₄
	HF_ Justification:	or HI
7)	CO ₂ Justification:	or NH_3
8)	CH ₄ Justification:	or CCl ₄
	Cr_ Justification: H ₂ O	or Si
	Justification: MgO Justification:	or SiO ₂
12)	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ Justification:	or BaO
		or (CH ₃) ₂ CHCH ₂ CH ₂ CH ₃

Circle the species with the higher boiling point and briefly justify your choice below.