| W | ORKSHOP 10 | ELECTRONS. | Name | e: | |-----------------|---|---|---|---| | 1. | Using dots (or arrows) to represent electrons. Fill in the following Aufbau (Orbital) diagrams. | | | | | 4p | | | | | | 3d | | | | | | 4s | | | | | | 3p | | | | | | | | | | _ | | | | | | | | | | | | _ | | | —
elenium | | | chromium (VI) ion | | | | nickel | | | | Us | ing subshell notation | on, $(1s^22s^2 \text{ etc})$ write | e complete electi | ron configurations | | Se | | | _ Ni | | | S ⁻² | | | Cr ⁺⁶ | | | No
fill | w write abbreviate
ed outer subshells. | d electron configura
i.e. iron: 1s ² 2s ² 2p | ntions using noblo ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶ ; a | le gas notation [] plus partially
bbreviated as [Ar]4s ² 3d ⁶ | | Se | | | Ni | | | S ⁻² | | | Cr ⁺⁶ | | | 2. | Write the electron of | configurations of the | ese elements and | I their ions: | | Mg | · | Mg ⁺² | | | | Cl | | Cl ⁻ | | | | Cs | | Cs ⁺ | | | | As | | As ⁻³ | | | | V | | V ⁺³ | | | | Sn | | Sn ⁺² | | Sn ⁺⁴ | | | | | | | **3**. Write symbols of three cations & three anions that are **isoelectronic** with neon: (isoelectronic means having the same number of electrons) **4.** Write Lewis electron dot formulas showing the **valence electrons** of: (Place the dots on the symbols) $F \quad Se \quad P \quad Br \quad Ga \quad Si \quad [\quad Sb \quad]^{-3} \quad K \quad [\quad Ca \quad]^{+2} \quad Ba$ **5.** Which of the following ions are isoelectronic with noble gases? Underline them. $Al^{+3} \ Cu^{+} \ Fe^{+3} \ Sn^{2+} \ Si^{-4} \ As^{5+} \ N^{-3}$