Solubility Chart:

Combination of cations with anions either produce no precipitate, (i.e. the ions do not combine in solution) or they form a precipitate, leaving less than 1% of the ions in solution. Soluble combinations are labeled (aq); insoluble combinations are labeled (s). Some combinations form gases or undergo complex reactions, these are labeled d, indicating decomposition. Spaces labeled ---- indicate no reference was found.

	C2H3O2	AsO ₄ ³ -	Br ⁻	CO3 ²⁻	Cl ⁻	CrO ₄ ²⁻	OH-	I-	NO ₃ -	C ₂ O ₄ ²⁻	O ²⁻	PO ₄ ³⁻	SO4 ²⁻	S 2-	SO3 ²⁻
Group I & NH4 ⁺	(aq)	(aq)	(aq)	(aq)	(aq)	(aq)	(aq)	(aq)	(aq)	(aq)	(aq)	(aq)	(aq)	(aq)	(aq)
Al ³⁺	(aq)	(s)	(aq)		(aq)		(s)	(aq)	(aq)		(s)	(s)	(aq)	d	
. Ba ²⁺	(aq)	(s)	(aq)	(s)	(aq)	(s)	(aq)	(aq)	(aq)	(s)	(aq)	(s)	(s)	d	(s)
Bi ³⁺		(aq)	d	(s)	d		(s)	(s)	d	(s)	s)	(aq)	d	(s)	
. Ca ²⁺	(aq)	(s)	(aq)	(s)	(aq)	(aq)	(s)	(aq)	(aq)	(s)	(s)	(s)	(s)	d	(s)
Co ²⁺ Ni ²⁺ and Cu ²⁺	(aq)	(s)	(aq)	(s)	(aq)	(s)	(s)	(aq)	(aq)	(s)	(s)	(s)	(aq)	(s)	(s)
Fe ²⁺	(aq)	(s)	(aq)	(s)	(aq)		(s)	(aq)	(aq)	(s)	(s)	(s)	(aq)	(s)	(s)
. Fe ³⁺	(s)	(s)	(aq)		(aq)		(s)		(aq)	(aq)	(s)	(s)	(aq)	(s)	
Pb ²⁺	(aq)	(s)	(s)	(s)	(s)	(s)	(s)	(s)	(aq)	(s)	(s)	(s)	(s)	(s)	(s)
Mg ²⁺	(aq)	d	(aq)	(s)	(aq)	(aq)	(s)	(aq)	(aq)	(s)	(s)	(s)	(aq)	d	(aq)
Hg ²⁺	(aq)	(s)	(s)	(s)	(aq)	(aq)	(s)	(s)	(aq)	(s)	(s)	(s)	d	(s)	
$\mathbf{A}\mathbf{g}^{\scriptscriptstyle{+}}$	(aq)	(s)	(s)	(s)	(s)	(s)	(s) -	(s)	(aq)	(s)	(s)	(s)	(s)	(s)	(s)
Zn ²⁺	(aq)	(s)	(aq)	(s)	(aq)	(s)	(s)	(aq)	(aq)	(s)	(s)	(s)	(aq)	(s)	(s)

It is useful to remember that all compounds containing Group I A ions are soluble. Also, all compounds containing the ammonium ion or the nitrate ion are soluble.