STANDARD DEVIATION

The **standard deviation** of a series of measurements which includes at least 6 independent trials may be defined as follows. If we let \mathbf{x}_m be a measured value, \mathbf{N} be the number of measurements, $\langle \mathbf{x} \rangle$ be the average or **mean** of all the measurements, then \mathbf{d} is the **deviation** of a value from the average:

$$\mathbf{d} = \mathbf{x}_{m} - \langle \mathbf{x} \rangle$$

and the standard deviation, s, is defined by:

$$s = \sqrt{\frac{\sum d^2}{(N-1)}}$$

where $\Sigma \mathbf{d}^2$ means "sum of all the values of \mathbf{d}^2 ."

The **value of the measurement** should include some indication of the precision of the measurement. The standard deviation is used for this purpose if a large number of measurements of the same quantity is subject to random errors only. We can understand the meaning of \mathbf{s} if we plot on the y-axis the number of times a given value of \mathbf{x}_m is obtained, against the values, \mathbf{x}_m , on the x-axis. The "normal distribution curve" is bell-shaped, with the most frequent value being the average value, $<\mathbf{x}>$.

Figure 3: Distribution of Values of a Measurement

Most of the measurements give values near <**x**>. In fact, 68% of the measurements fall within the standard deviation **s** of <**x**> (see graph). 95% of the measured values are found within 2**s** of <**x**>. We call the value of 2**s** the uncertainty of the measurement, **u**. Then, if we report our value of the measurement as <**x**>±**u**, we are saying that <**x**> is the most probable value and 95% of the measured values fall within this <u>range</u>. The next example shows how the standard deviation can be used to evaluate the data.

Example 1. Weight of a test tube on 10 different balar	Example 1.	Weight of a te	est tube on 10	different balance
--	------------	----------------	----------------	-------------------

Balance Number	Weight (g)=x _m	$d=x_m-< x>$	d^2
1	24.29	0.00	0.0000
2	24.26	-0.03	0.0009
3	24.17	-0.12	0.0144
4	24.31	0.02	0.0004
5	24.28	-0.01	0.0001
6	24.19	-0.10	0.0100
7	24.33	0.04	0.0016
8	24.50	0.21	0.0441
9	24.30	0.01	0.0001
10	24.23	-0.06	0.0036
	$\Sigma x_{m} = 242.86$		$\Sigma d^2 = 0.0752$

$$< x > = 242.86/10 = 24.29 \text{ g and s} = \sqrt{(0.0752/9)} = 0.0917, \text{ range} = < x > \pm 2s = 24.29 \pm 0.18 \text{ g}$$

or, the test tube weighs between 24.11 and 24.47 g, with 95% certainty.

Now each of the values of \mathbf{x}_{m} are checked against the range. We observe that the weight from balance 8 is outside the range; we should discard it as unreliable and recalculate $\langle \mathbf{x} \rangle$, \mathbf{d} , \mathbf{d}^{2} and \mathbf{s} .