IN-Class Group QUIZ spring 2017 Name:						
1. Consider titrating 100.0 mL of 0.200 M acetic acid (K _a = 1.8 x 10 ⁻⁵) with 0.100 M NaOH. Calculate the pH of the resulting solution at the following points of the titration: A. 0.0 mL of NaOH have been added B. 50.0 mL of NaOH have been added C. half-way point pH = pKA Hoty D. equivalence point B. 78 E. 250.0 mL of NaOH have been added Which of the following would be the best indicator to use for this titration? Justify your answer. Methyl red K _a = 1.0 x 10 ⁻⁵ PKq = 5 Thyrol phus						
Methyl red $K_a = 1.0 \times 10^{-5}$ pKq = 5 Thymol plue $K_a = 1.3 \times 10^{-9}$ pKq = 8.89 Thymol plue $K_a = 1.3 \times 10^{-9}$ pKq = 11.20 Closest to the Equiviption of the Equivipolar of the Equiviption of th						
2. If 25.0 mL of 0.10 M NH ₃ (aq) (K _b for NH ₃ is 1.8 x 10 ⁻⁵ at 25 °C) and 60.0 mL of 0.20 M NH ₄ Cl(aq) are mixed, determine: A. the pH of the resulting solution B. the pH of the resulting solution after 10.0 mL of 0.20 M HCl(aq) is added 5.04 For 2M						
3. Exactly 0.400 L of 0.50 M Pb ²⁺ & 1.60 L of 2.5 x 10 ⁻⁸ M Cl ⁻ are mixed together to form 2.00L. Calculate Q and $Q = 4 \times 10^{-5}$ predict if a ppt will occur. What if 2.5 x 10 ⁻² Cl ⁻ was used? $K_{sp} = 1.17 \times 10^{-5} = 4 \times 10^{-17}$ NO						
4. What is the molar solubility of lead(II) chloride in 1.0 L of solution that contains 2.0 x 10 ⁻² mol of HCl? Copprox = .02 M Tapprox = .02 M						
5. Consider zinc nyaroxide, $2n(OH)_2$, where $K_{sp} = 3 \times 10^{-8}$.						
A. Determine the solubility of zinc hydroxide in pure water. $S = 1.96 \times 10^{-6} \text{ M}$						
B. How does the solubility of zinc hydroxide in pure water compare with that in a solution buffered at pH 6.00? Quantitatively demonstrate the difference (if any) in solubility. Is zinc hydroxide more or less soluble at pH 6.00? 3x10 M Applot Because the Solubility has incleased more Soluble of more Soluble of phile Solubility has incleased more Soluble at pH 5c. If enough base is added, the OH ligand can coordinately bind with the Zn ¹² ion to form the soluble at pH 6 zincate ion, [Zn(OH)4] ⁻² . The formation constant, K _f , of the full complex ion [Zn(OH)4] ⁻² can be calculated from the following successive equilibrium expressions shown:						
$Zn^{2+}(aq) + OH^- \leftrightarrow ZnOH^+(aq)$ $K_1 = 2.5 \times 10^4$ $K_7 = K_1 + K_2 + K_3 + K_4$						
$ZnOH^+(aq) + OH^-(aq) \leftrightarrow Zn(OH)_2(s)$ $K_2 = 8.0 \times 10^6$						
$Zn(OH)_2(s) + OH(aq) \leftrightarrow Zn(OH)_3(aq)$ $K_3 = 70$						
$Zn(OH)_2(s) + OH^*(aq) \leftrightarrow Zn(OH)_3^*(aq)$ $Zn(OH)_3^*(aq) + OH^*(aq) \leftrightarrow Zn(OH)_4^2^*(aq)$ $K_3 = 70$ $K_4 = 33$ Determine the value of K_1 for the zincate ion. $K_1 = 33$ $K_2 = 6.3110^{-31}$						
6. Calculate the free ion concentration of Cr ³⁺ when 0.01 moles of chromium(III) nitrate is dissolved in 2.00 liters of a pH 10 buffer. [HT] = 110 ⁻¹⁰ [OH-] = 110 ⁻¹⁴ M 7. Calculate the pH required to precipitate out ZnS from a solution mixture containing 0.010 M Zn ²⁺ and 0.01M Cu ²⁺ . Will CuS precipitate out under these conditions? ZnS = 2 × 10 ⁻²⁵ CuS = 1.27 × 10 ⁻³⁶						
8. Will a precipitate of silver carbonate form ($K_{sp} = 8.46 \times 10^{-12}$) when 100.0 mL of 1.00 x 10 ⁻⁴ M AgNO ₃ (aq) and 200.0 mL of 3.00 x 10 ⁻³ M Na ₂ CO ₃ (aq) are mixed? What will be the remaining concentration of ions present in solution? $ \begin{array}{cccccccccccccccccccccccccccccccccc$						

IN-Cla	ss Group QUIZ	spring 2017	Name:			
1.	resulting solution at the A. 0.0 mL of NaO B. 50.0 mL of NaO C. half-way point D. equivalence po E. 250.0 mL of Na	e following points of the H have been added OH have been added OH = PKA H of The Short Both Have been added OH have been added bollowing would be the be Ka = 1.0 x 10 ⁻⁵ Ka = 1.3 x 10 ⁻⁹	Hoab Buffe	oure weak and ourse w		
2.	If 25.0 mL of 0.10 M NH ₃ (aq) (K _b for NH ₃ is 1.8 x 10 ⁻⁵ at 25 °C) and 60.0 mL of 0.20 M NH ₄ Cl(aq) are mixed, determine:					
		esuiting solution	.58 .0 mL of 0.20 M HCl(aq) is	added 5.04 if w	7.81 for.2	
3. Exactly 0.400 L of 0.50 M Pb ²⁺ & 1.60 L of 2.5 x 10 ⁻⁸ M Cl ⁻ are mixed together to form 2.00L. Calculate Q and Q = 4 predict if a ppt will occur. What if 2.5 x 10 ⁻² Cl ⁻ was used? $K_{sp} = 1.17 \times 10^{-5} = 4 \times 10^{-17}$ NO QPO POT						
4. What is the molar solubility of lead(II) chloride in 1.0 L of solution that contains 2.0 x 10-2 mol of HCI?						
5. Consider zinc hydroxide, $Zn(OH)_2$, where $K_{sp} = 3 \times 10^{-17}$.						
A. Determine the solubility of zinc hydroxide in pure water. $S = 1.96 \times 10^{-6} \text{ M}$						
B. How does the solubility of zinc hydroxide in pure water compare with that in a solution buffered at pH 6.00? Quantitatively demonstrate the difference (if any) in solubility. Is zinc hydroxide more or less soluble at pH 6.00? 3x 10 4 Apploy Because the Solubility has incleased more of the Solubility has						
	$Zn^{2+}(aq) + OH^- \leftrightarrow Zn^{-1}$	OH⁺ (aq)	$K_1 = 2.5 \times 10^4$	$K_7 = K_1 + K_2 +$	K3+K4	
	ZnOH+ (aq) + OH-(aq)	⇔ Zn(OH)₂(s)	$K_2 = 8.0 \times 10^6$			
	$Zn(OH)_2(s) + OH^-(aq)$	→Zn(OH)₃˙(aq)	$K_3 = 70$	CLOH	13	
	$Zn(OH)_3^-(aq) + OH^-(aq)$		K ₄ = 33	Cr10H Ksp = 6.37	103	
Determ	nine the value of K_f for t	he zincate ion.	4.62×1014	AT INSP		
6. Calculate the free ion concentration of Cr ³⁺ when 0.01 moles of chromium(III) nitrate is dissolved in 2.00 liters of a pH 10 buffer. [HT] = XIO COHT = XIO M 7. Calculate the pH required to precipitate out ZnS from a solution mixture containing 0.010 M Zn ²⁺ and 0.01M Cu ²⁺ . Will CuS precipitate out under these conditions? ZnS = 2 x 10 - 25						
2. TTIII C	. p. ou.paco o. silvoi ca		J WINCH 20010 II	U. AIUU A AU ITI MENUS(dQ)	ariu	