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The HIV-1 envelope (Env) glycoprotein, a trimer of gp120-gp41 het-
erodimers, relies on conformational flexibility to function in fusing
the viral and host membranes. Fusion is achieved after gp120
binds to CD4, the HIV-1 receptor, and a co-receptor, capturing an
open conformational state in which the fusion machinery on gp41
gains access to the target cell membrane. In the well-characterized
closed Env conformation, the gp120 V1V2 loops interact at the
apex of the Env trimer. Less is known about the structure of the
open CD4-bound state, in which the V1V2 loops must rearrange
and separate to allow access to the coreceptor binding site. We
identified two anti-HIV-1 antibodies, the co-receptor mimicking
antibody 17b and the gp120-gp41 interface-spanning antibody
8ANC195, that can be added as Fabs to a soluble native-like
Env trimer to stabilize it in a CD4-bound conformation. Here we
present an 8.9Å cryo-electron microscopy structure of a BG505
Env-sCD4-17b-8ANC195 complex, which reveals large structural
rearrangements in gp120, but small changes in gp41, as compared
to closed Env structures. The gp120 protomers are rotated and
separated in the CD4-bound structure, and the three V1V2 loops
are displaced by ∼40Å from their positions at the trimer apex in
closed Env to the sides of the trimer in positions adjacent to, and
interacting with, the three bound CD4s. These results are relevant
to understanding CD4-induced conformational changes leading to
co-receptor binding and fusion, HIV-1 Env conformational dynam-
ics, and describe a target structure relevant to drug design and
vaccine efforts.
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INTRODUCTION

The HIV-1 envelope (Env) glycoprotein, a trimer of gp120-gp41
heterodimers, mediates recognition of host receptors and fusion
of the viral and target cell membranes (1). Structural flexibility
of HIV-1 Env is required for its function in membrane fusion;
thus Env exists in multiple conformational states on the surface
of virions (2). Fusion involves several steps: the gp120 portion
of Env trimer first binds to the host receptor CD4 to capture
a conformational state of Env that exposes the binding site for
an HIV-1 co-receptor (CCR5 or CXCR4), which in turn leads
to gp41-mediated fusion of the viral and host cell membranes.
CD4-induced conformational changes within the Env trimer are
incompletely understood. The binding of soluble CD4 (sCD4)
produces little to no changes in the structures of gp120 cores
(gp120 monomers with truncations in the N- and C-termini and
V1V2 and V3 loops) (3), but results in rotation of the gp120
protomers within virion-bound Env trimers to create an open con-
formation distinct from the closed conformation of unliganded
virion-bound trimers (4). Single particle electron microscopy
(EM) structures of recombinant native-like soluble Env gp140
trimers (SOSIPs) confirmed that they can adopt the same closed
and open architectures as virion-bound Env trimers (5-7), thus
the SOSIP substitutions (introduction of a disulfide bond linking
gp120 to gp41 and an Ile->Pro mutation in gp41 (6)) do not ap-

pear to prevent transition to the open state. Despite the plethora
of recent crystal and EM structures at atomic and near-atomic
resolutions of closed Env trimers, most in complex with broadly
neutralizing antibodies (bNAbs) (8-19), only low resolution struc-
tures derived from cryo-electron tomography of HIV-1 virions
have been available for sCD4-bound open Env trimers (4-7).

The closed conformation of HIV-1 Env is stabilized by inter-
actions at the trimer apex mediated by the gp120 V1V2 loop (8-
19). In the closed state, the V1V2 region shields the binding site
for the co-receptor on the V3 loop (11, 16), but V1V2 interactions
with V3 cannot be maintained when the gp120 protomers rotate
and separate to create the CD4-bound open conformation. The
details of V1V2 rearrangements in the open structure of HIV-
1 Env trimer have not been addressed: the V1V2 loops were
not localized in the Env trimer used in a cryo-EM single particle
structure of an open KNH1144 SOSIP bound to the co-receptor-
mimicking antibody 17b (7) or in lower resolution cryoelectron
tomography structures of CD4-bound open Env trimers on viri-
ons (4, 7). However, computational modeling suggested displace-
ment of V1V2 towards CD4 in CD4-bound Env structures (20,
21), consistent with earlier studies demonstrating involvement of
V1V2 in the induction of the epitopes of co-receptor mimic/CD4-
induced antibodies such as 17b (22).

A structural description of conformational changes result-
ing from CD4 binding requires identification of a stable and
conformationally homogeneous CD4-Env trimer complex. We
previously reported a 16.8 Å negative stain single particle EM
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Fig. 1. 8.9 Å EM reconstruction of Env-sCD4-17b-8ANC complex. (A, B)
Electron density fit by coordinates for gp120 (gray), gp41 (orange), sCD4
D1 (yellow), 17b VH-VL (forest green), 17b CH-CL (chartreuse), 8ANC195 VH-
VL (magenta), and 8ANC195 CH-CL (pink). N-linked glycan coordinates are
shown as sticks. (A) Side view in which the three-fold symmetry axis of
the BG505 trimer is vertical. (B) Bottom view looking down the three-fold
symmetry axis of the BG505 trimer. (C) Side view of density of gp41 portion of
the BG505 trimer. (D) Close-up of density near the N-linked glycan attached
to BG505 Asn368gp120.

reconstruction of the BG505 SOSIP.664 Env trimer bound to
sCD4, 17b, and 8ANC195 (18). The two Fab ligands in this
complex bind to distinct epitopes on Env. 8ANC195 binds to a
region of the gp120-gp41 interface flanked by N-linked glycans
attached to Asn234gp120 and Asn276gp120 (18, 23). 17b, an HIV-1
co-receptor mimic (24), binds to a CD4-induced (CD4i) epitope
(25) that comprises part of the gp120 bridging sheet and overlaps
with the co-receptor binding site on gp120 (24). Accordingly, this
antibody does not bind or neutralize most HIV-1 strains; the
exceptions being sensitive Tier 1 primary isolates in which the co-
receptor binding site is exposed in the absence of CD4 (26, 27).
Because the co-receptor and 17b binding sites are inaccessible
in the closed trimer conformation (11, 16), 17b does not bind
to the BG505 SOSIP trimer unless sCD4 is present (6). Since
three 17b Fabs cannot be accommodated on a closed Env trimer
due to steric clashes (18), a CD4-bound trimer complex might be
stabilized by adding 17b and 8ANC195 (to prevent Env closure
and rigidify the gp120-gp41 interface, respectively).

Here we report an 8.9 Å structure of the BG505-sCD4-
17b-8ANC195 complex (hereafter referred to as Env-sCD4-17b-
8ANC) derived by single particle cryo-EM. The higher resolution
structure reveals an Env structure with a large CD4-induced rota-
tion of the gp120 protomers and an∼40Åmovement of the V1V2
loop from the apex of the trimer to a position adjacent to sCD4,
but relatively minor changes within gp41 from closed trimer struc-
tures. Biochemical studies using a BG505 with a truncated V1V2
loop support the model in which sCD4 binding induces V1V2
displacement to expose the co-receptor binding site. These results
are relevant to understanding the CD4-induced conformational
changes leading to co-receptor binding and fusion that allows
HIV-1 entry into CD4+ target cells, HIV-1 Env conformational
dynamics, and present a target structure relevant to drug design
and vaccine efforts.

Results

Cryo-EM structure determination

BG505 SOSIP.664, a cleaved, soluble native-like HIV-1
Env trimer (6), sCD4 D1D2 (domains 1 and 2 of the CD4
ectodomain), and Fabs from the anti-HIV-1 antibodies 17b and
the G52K5 variant of 8ANC195 (23) (hereafter referred to as
8ANC195) were expressed and purified as previously described
(18). The Env-sCD4-17b-8ANC complex was prepared for cry-
oEM by first isolating an Env-sCD4-17b ternary complex by size
exclusion chromatography (SEC), adding 8ANC195 Fab, using
SEC again to isolate the quaternary Env-sCD4-17b-8ANC com-
plex, and then plunge freezing the complex onto EM grids (Fig.
S1A).

Two independent single particle reconstructions were ob-
tained from 5,175 out of 13,268 total particles and 9,606 out of
19,355 total particles, respectively, at resolutions of ∼8.9 Å and
∼9.8 Å (calculated using the 0.143 gold-standard Fourier shell
coefficient cutoff criterion) (28) (Fig. 1, 2; Fig. S2, S3). These
relatively high resolutions for a sCD4-bound Env structure were
confirmed by feature-based criteria including clear definition of
gp41 HR1 α-helices (Fig. 1 C) and densities corresponding to
BG505 N-linked glycans (Fig. 1 D). Regions of the structure that
were disordered and/or calculated to be at a lower resolution (29)
were areas most distant from the trimer axis of symmetry such as
the constant domains (CH and CL) of the Fabs, the D2 domain of
sCD4, and density identified as the displaced gp120 V1V2 loop
(Fig. S2C).

Coordinates from crystal structures of individual components
of the Env-sCD4-17b-8ANC complex were fit by rigid body dock-
ing into cryo-EM density maps. The coordinates of 8ANC195
(PDB 4P9M) (23), 17b and sCD4 (PDB 1RZJ) (30) were first
docked into their corresponding densities, after which the gp41
coordinates from a BG505 trimer structure (PDB 5CEZ) (9)
were fit into density. For fitting gp120 densities, we deleted the
V1V2 and V3 coordinates from a closed BG505 trimer structure
(PDB 5T3X) (10) and then fit the truncated gp120s individually
into protomer densities. After fitting the gp120, 17b, and sCD4
coordinates independently, the complex was compared with the
crystal structure of a gp120-sCD4-17b complex (PDB 1RZJ) (30),
resulting in root mean square deviations (RMSDs) of 1.7 Å for
98 Cα atoms in sCD4 D1 and 1.5 Å for 234 Cα atoms in the 17b
VH-VL domain after superimposing the gp120s. The relatively low
RMSDs for the independently fit sCD4 and 17b VH-VL coordi-
nates demonstrated that the cryoEM reconstruction reproduced
known interactions of CD4 and 17b with gp120. The placement
of the 8ANC195 VH-VL domains within its epitope at the gp120-
gp41 interface was also not greatly shifted from its placement
in an 8ANC195-BG505 (closed trimer) crystal structure (PDB
5CJX) (18) (RMSD = 2.3 Å for 238 8ANC195 VH-VL Cα atoms
after superimposing the gp120s) (Fig. 3 A).

The fitted coordinates and density maps for the 8.9 Å and
9.8 Å reconstructions showed no major differences except for
the positions of the Fab CH-CL domains (which are not rigid
with respect to the antigen-binding VH-VL domains) (Fig. S3).
Thus analyses were done using the 8.9 Å reconstruction, with
comparisons to verify features of interest with the independently-
determined 9.8 Å reconstruction (this study) and the previously-
described 16.8 Å negative stain reconstruction (18).

Comparison of Env trimer conformational states
The 8.9 Å Env-sCD4-17b-8ANC structure revealed densities

for three sCD4, three 17b, and three 8ANC195 Fabs interacting
with a three-fold symmetric BG505 Env trimer (Fig. 1 A, B). The
BG505 Env in this complex adopts a conformation that is more
open than the closed conformation in crystal and EM structures
of Env trimers (8-19), but less open than the conformation in
low resolution sCD4-bound Env structures (4-7) (Fig. 2A, B;
Fig. 3 A) and an ∼9 Å cryo-EM reconstruction of the KN1144
SOSIP.681 soluble trimer bound to 17b in the absence of sCD4
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Fig. 2. CD4-induced structural changes in Env trimers. (A) gp120 surface representations for the closed (PDB 5T3X) (blue), partially-open (this study) (grey),
and sCD4-bound open Env structures (PDB 3DNO) (green) as seen from the side. V1V2 loops (red) are depicted as surface representations for the closed and
open structures and as EM density for the partially-open structure. Locations of V3 (blue) and the CD4 binding site (CD4bs) (yellow) are depicted as surface
representations. (B) gp41 in ribbon representation (closed and partially-open Env structures) or as density (open Env structure) for Env structures. As gp41
coordinates for an open Env structure were unavailable, we used the density from the single particle EM structure of an open KNH1144-17b complex (EMDB
5462) (7) (C) Top view of gp120 representations shown in panel A. (C) Top view of gp41 representations shown in panel A.

(7). The higher resolution and/or improved order of the present
reconstruction revealed features that were unresolved in the
other open Env structures, including density for several BG505 N-
linked glycans (e.g., a well-ordered glycan attached to N386gp120)
and density for gp41 and gp120 α-helices (Fig. 1 C, D; Fig. S4).
The localization of gp41 helices allows comparison of the degree
of CD4-induced movement of gp120 versus gp41 in open and
closed Env structures. Superposition of the gp120s from the Env-
sCD4-17b-8ANC structure, a closed trimeric Env (PDB 5T3X)
(10), and a sCD4-bound Bal open Env structure (PDB 3DNO) (4)
revealed major differences in gp120 orientations (Fig. 2 A, B; Fig.
3 A). Fig. 2 B shows a progression of gp120 displacement from
the relatively closely-spaced gp120s held together by the V1V2

region in the closed trimeric state (left), to the partially-open
conformation in the Env-sCD4-17b-8ANC structure with newly-
identified V1V2 loop displacements (middle), to the fully open
conformation in the Bal-17b structure (in which the V1V2 loops
were not localized) (right). By contrast to the large differences in
gp120s in the closed, partially-open, and open Env conformations,
the gp41 HR1 α-helices positions were relatively unaffected by
CD4-induced Env opening (Fig. 2 A, B, C, D).

CD4-induced V1V2 loop displacement

The BG505 portion of the Env-sCD4-17b-8ANC reconstruc-
tion shows no density for the V1V2 and V3 loops in their original
positions with respect to gp120, indicating structural rearrange-
ments in addition to the rotation of gp120 monomers that are
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Fig. 3. Putative V1V2 densities. (A) Superposition of the gp140 (gp120
plus gp41) coordinates from one monomer in a closed BG505 Env trimer
structure (PDB 5T3X) (blue) and the gp140 coordinates from the 8.9 Å
partially-open BG505 Env trimer reported here (gray) as seen from two
different orientations. The gp140 monomers were aligned using the 3-fold
symmetry axis of the gp41 trimer. The arrow in the left panel marks the
axis about which a rotation of 30˚ and a translation of 2.6 Å relates the
gp120 in the closed structure to the gp120 in the partially-open structure.
The V1V2 loop (red) is depicted as a ribbon for the closed trimer and as EM
density for the partially-open structure. The V3 loop (dark blue) is depicted
as a ribbon for closed trimer and not shown in the partially-open structure
because it was disordered. The 8ANC195 Fab (magenta heavy chain; light
pink light chain) is shown in the left panel based on its position with respect
to the partially-open gp140, illustrating that its epitope at the gp120-gp41
interface does not undergo extensive changes. (B) sCD4-proximal densities
(red) in four independent CD4-bound Env structures: the 8.9 Å and 9.8 Å
cryo-EM reconstructions of the Env-sCD4-17b-8ANC complex (this study), the
16.8 Å negative stain reconstruction of the Env-sCD4-17b-8ANC complex (18),
and the ∼20 Å reconstruction of a sCD4-Env trimer structure derived from
sub-tomogram averaging of virion-bound Env spikes (4). High contour level
densities in the Env-sCD4-17b-8ANC reconstructions are shown in bright red
and bright yellow for V1V2 and sCD4, respectively, with lower contour level
densities in lighter colors.

induced by sCD4 binding. We identified a prominent density near
sCD4 as the likely location of the rearranged V1V2 based on
several criteria: (i) the density projects towards sCD4 starting

from the center of the gp120 β2 and β3 β-strands from which the
V1V2 loop emanates, (ii) analogous density is present in inde-
pendent CD4-bound Env structures (Fig. 3 B): the 8.9 Å and 9.8
Å cryo-EM reconstructions of the Env-sCD4-17b-8ANC complex
described here, the 16.8 Å negative stain reconstruction of the
Env-sCD4-17b-8ANC complex (18), and the ∼20 Å sCD4-bound
Env trimer structures derived from sub-tomogram averaging of
virion-bound Env spikes (4, 5), and (iii) the density in the 8.9 Å
reconstruction contacts sCD4 D1 (Fig. 3 B, Fig. 5 B), consistent
with crystal structures of monomeric gp120s showing V1V2 stem
interactions with sCD4 (30, 31). We note that analogous density
is not present in the open structure of the KNH1144 SOSIP.681
trimer bound to 17b Fab in the absence of sCD4 (7), suggesting
that the rearranged V1V2 loop becomes more ordered in open
Env structures through interactions with bound sCD4.

Resolution limitations in the Env-sCD4-17b-8ANC complex
structure precluded ab initio building of V1V2 residues into
EM density. However, we could use available V1V2 coordinates
to interpret the density since evidence suggests that the V1V2
loop is likely to maintain its overall four-stranded Greek key β-
sheet folding topology because this fold is preserved in closed
Env trimer structures (8-19) and in structures of V1V2-alone
scaffolds (32, 33) (Fig. 4 A). In addition, EM reconstructions
of V1V2-directed bNAbs bound to full-length gp120 monomers
showed a variety of binding orientations for V1V2 conformation-
specific bNAbs (32), consistent with at least some elements of
the disulfide-bonded V1V2 β-sheet structure being maintained
despite flexibility between monomeric gp120 and V1V2. In closed
Env trimer structures, strand A of the four-stranded Greek key β-
sheet structure of the V1V2 loop emanates a region that includes
a helical turn (Fig. 4 B), but the analogous residues are within a
β-strand called β2 in gp120 cores (Fig. 4 C). Strand D, the final
β-strand of the V1V2 loop, leads into the gp120 β3 β-strand. The
environment of the β2-β3 region in the closed Env trimer is rear-
ranged in sCD4-bound gp120 core structures into a four-stranded
antiparallel β-sheet comprising strands β20, β21, β2 and β3 (Fig.
4 B, C). A molecular dynamics model of repositioned V1V2 in
full-length CD4-bound gp120 assumed this same rearrangement
of the β2-β3 region (21) (Fig. 4 A, D).

We used a lower contour level for interpreting the V1V2
density (light red densities in Fig. 2, 3) in our EM maps than we
used for central portions of the BG505 trimer; the lower level
was required to reveal density for less ordered portions of the
complex structure such as sCD4 D2 (Fig. S2C). At a high contour
level, we saw that coordinates for the gp120 and sCD4 D1 from
a crystal structure of a V1V2-truncated monomeric gp120 core
complexed with sCD4 and 17b (PDB 1RZJ) fit the density well
(Fig. 5 A). The electron density suggested contacts between V1V2
and sCD4 D1 (Fig. 5 B), consistent with monomeric gp120-sCD4
crystal structures (30, 31). At a lower contour level, we found that
the coordinates for the molecular dynamics model of full-length
gp120 with a rearranged V1V2 loop fit the EM density well (Fig.
5 C, D). We were unable to localize the V3 loop in the EM density
of the partially-open sCD4-bound Env trimer, but we could rule
out the location predicted in the molecular dynamics model or
in a crystal structure of a V3 loop-containing monomeric gp120
core (PDB 2QAD) (34) (Fig. 5 C; Fig. S5A), perhaps because the
V3 loop position in the crystal structure was influenced by crystal
packing (Fig. S5B).

The role of V1V2 in 17b binding
To further investigate the influence of the gp120 V1V2 loop

on interactions with sCD4, we constructed a V1V2-truncated
version of BG505 SOSIP.664 (BG505-△V1V2) analogous to a
V1V2-truncated gp120 core (22, 31) with the goal of solving
the structure of a V1V2-truncated Env trimer bound to sCD4.
Purified BG505-△V1V2 appeared trimeric by negative stain EM,
and the complex of BG505-△V1V2 with sCD4, 17b, and 8ANC195
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Fig. 4. V1V2 loop structures. (A) V1V2 folding topolo-
gies in V1V2 scaffold (PDB 5ESV) (32, 33), closed BG505
trimer (PDB 5FYJ) (10, 19), and molecular dynamics
model of repositioned V1V2 in full-length CD4-bound
gp120 (21). β-strand nomenclature in V1V2 is the same
as in (32). Disulfide bonds are shown as yellow sticks.
(B-D) gp120s from structures of closed BG505 trimer
(PDB 5FYJ) (19) (B), sCD4-bound monomeric gp120
core (truncated V1V2 and V3 loops) (PDB 1RZJ) (30)
(C), and the molecular dynamics model of full-length
CD4-bound gp120 (21) (D).Top panels show structural
overviews. Middle panels show close-up views of the
regions in the boxed areas. Bottom panels show topol-
ogy diagrams of the bridging sheet (adapted from
(16)). V1V2 is red and V3 is blue. Strands β2 and
β3, which precede and follow V1V2 in the gp120
sequence, are cyan and green, respectively. gp120
strands β20 and β21, which form a β-sheet with β2 and
β3 in sCD4-bound gp120 structures (31) are orange
and magenta, respectively.

was stable by SEC (Fig. S6A). Trimeric BG505-△V1V2 and some
of the individual ligands could be identified in negative stain EM
2D class averages (Fig. S6C). However, we could not derive a
3D reconstruction from the class averages to examine structural
differences in BG505 resulting from V1V2 truncation, suggesting
that the BG505-△V1V2 complex with sCD4, 17b, and 8ANC195,
which lacked the sCD4–V1V2 interaction, was less structurally
homogeneous than the Env-sCD4-17b-8ANC complex.

We used the BG505-△V1V2 protein to investigate the effects
of the V1V2 loop on 17b binding. Purified BG505 or BG505-
△V1V2 proteins were incubated with 17b Fab in the absence of
sCD4 and subjected to SEC. The unmodified BG505 showed no
complex formation with 17b, consistent with previous studies (6,
35), whereas BG505-△V1V2 formed an SEC-stable complex with
17b in the absence of sCD4 (Fig. 6). These results are consistent
with structural changes in the V1V2 loop upon sCD4 binding
allowing binding of 17b in the V1V2 loop-containing Env trimer.

DISCUSSION
The HIV-1 Env spike is a conformationally dynamic molecule,
both in its native, virion-bound trimeric state, and in soluble
native-like SOSIP trimers developed as immunogen candidates
that are being used for biochemical and structural studies (36). At
least five different conformational states have been identified by
EM and/or X-ray crystallography (listed from closed to increasing
open conformation categories): (i) closed unliganded and bNAb-

bound conformations observed on virions and in SOSIPs (4-
19), (ii) unliganded partially-open native-like states observed by
negative stain EM for SOSIPs other than BG505 SOSIP.664 (37-
39), (iii) partially-open virion-bound Env trimers complexed with
the anti-HIV-1 antibodies b12 or A12 (4), (iv) the partially-open
sCD4-17b-8ANC195-BG505 structure reported here and in (18),
and (v) an open Env conformation induced on virions by sCD4
and 17b binding (4), on BG505 and other SOSIPs by sCD4 and
17b binding (5), or on the KNH1144 SOSIP by binding of either
the 17b (7) or Z13e1(40) antibodies alone. At least some of
these conformational states identified through static structural
studies are likely to exist on virions, as evidenced by single
molecule fluorescence resonance energy transfer (FRET) studies
of Env trimers on HIV-1 virions, which revealed unliganded
native Env to be intrinsically dynamic (2). Transitions between
low-, intermediate-, and high-FRET states were discovered, with
the predominating low-FRET state identified as the closed Env
trimer conformation, and the intermediate-FRET state (popu-
lated almost exclusively from the high-FRET state) interpreted
as a co-receptor-stabilized conformation that was stabilized by si-
multaneous introduction of sCD4 and 17b (2). Although the high-
FRET state could not be precisely identified, the proportions of
both the high- and medium-FRET states were increased by sCD4
and 17b addition, suggesting they represent distinct forms of open
Env conformational states.
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Fig. 5. V1V2 fitting to EM density. Densities are gray (gp120), orange (gp41),
yellow (sCD4), and red (V1V2). (A) EM density map (high contour level)
fit with coordinates of a sCD4-bound monomeric gp120 core (truncated
V1V2 and V3 loops) (PDB 1RZJ) (30). (B) Close-up of map and coordinates
in panel A showing putative contacts between V1V2 loop stem and CD4
D1. (C) EM density map (low contour level for V1V2 and sCD4 regions) fit
with coordinates of the molecular dynamics model of full-length CD4-bound
gp120 (21). The V3 loop does not fit in the density. (D) Close-up of map and
coordinates in panel C.

Fig. 6. 17b interactions with BG505 and BG505-△V1V2. (A) SEC profile
demonstrating that BG505-△V1V2, but not BG505, binds 17b Fab. (B) SDS-
PAGE analysis of SEC fractions.

The large conformational differences in the sCD4-17b-
8ANC195– bound BG505 trimer with respect to closed Envs,
including rotation/separation of the gp120 cores and a >40 Å
displacement of the V1V2 loop, suggests that this conformation
represents a structural intermediate to co-receptor binding that
is closer to completely open sCD4-bound Env structures than
to closed structures. The sCD4-induced Env trimer opening ob-

served in this study arose primarily from rigid body rotations
of the gp120 monomers as opposed to changes in trimeric gp41
or the gp120-gp41 interface. With respect to trimeric gp41, we
observed that the HR1 α-helices in the partially-open trimer
were slightly closer together than their counterparts in a closed
trimer (Fig. 2 B), but cannot rule out artifacts from the low
resolution of the partially-open structure and/or effects of the
SOSIP ‘IP’ substitution (I559Pgp41) (6) on sCD4-induced confor-
mation changes. However, the conclusion that the gp120-gp41
interface is relatively unchanged during sCD4-induced trimer
opening is supported by the fact that 8ANC195 binds similarly
to both closed and sCD4-bound trimers (Fig. 3 A). The question
remains as to why the BG505 in our structure is only partially-
open as opposed to completely open. Because the Env-sCD4-17b-
8ANC complex was prepared by adding 8ANC195 to a preformed
BG505-sCD4-17b complex, we speculate that the BG505-sCD4-
17b complex was fully open until incubated with 8ANC195, a
bNAb that prefers the closed Env conformation (18). 8ANC195
binding could have induced partial closure of the Env trimer to
better bind to its gp120-gp41 epitope, a conformational sequence
reminiscent of the high- to intermediate-FRET state conversion
described for native Env trimers on virions (2). It is notable
that the Env trimer did not completely close, which would have
resulted in steric occlusion of the three 17b Fabs at the trimer apex
(18) likely leading to 17b Fab dissociation, nor did it even close to
the point of creating contacts between 17b Fabs (as evidenced by
the cryo-EM map showing no contact between 17b Fabs) (Fig.
1 A). Thus the partially-open Env conformation revealed in the
Env-sCD4-17b-8ANC likely represents a conformation accessible
to native Env trimers on the pathway towards fusion.

In summary, the cryo-EM structure presented here repre-
sents the most detailed glimpse of structural changes occurring
during Env-mediated fusion of the HIV-1 and host cell mem-
branes. The presence of 17b, a co-receptor mimicking antibody,
suggests that the partially-open Env conformation we described
is correlated with the co-receptor-bound Env state. Hence the
V1V2 loop movement observed in our complex structure ra-
tionalizes why CD4 binding is required for co-receptor binding
and subsequent release of the fusion peptide. In addition, the
structure provides a new potential target for design of antibody-
or small molecule-based anti-HIV-1 therapeutics.

Methods
Protein Production and Purification. 6x-His tagged Fabs of 17b and the
8ANC195G52K5 variant of 8ANC195 were expressed by transient transfection
in HEK293-6E cells (National Research Council of Canada) and purified from
cell supernatants using Ni-NTA chromatography and SEC as described previ-
ously (18). sCD4 D1D2 (domains 1 and 2; residues 1–186 of mature CD4) was
produced in baculovirus-infected Hi5 insect cells and was purified by Ni-NTA
chromatography and SEC (41). BG505 SOSIP.664, a native-like soluble clade A
gp140 trimer (6), was constructed to include ‘SOS’ substitutions (A501Cgp120,
T605Cgp41), the ‘IP’ substitution (I559Pgp41), the N-linked glycan sequence
at residue 332gp120 (T332Ngp120), an enhanced gp120-gp41 cleavage site
(REKR to RRRRRR), and a stop codon after residue 664gp41 (Env numbering
according to HX nomenclature). BG505-△V1V2 trimer was constructed by
replacing residues 128-194 of the V1V2 loop with a Gly-Ala-Gly linker, as
described for previous experiments with a V1V2-truncated gp120 (22). BG505
and BG505-△V1V2 proteins were expressed in HEK293-6E cells treated with
5 µM kifunensine (Sigma) by transient transfection of plasmids encoding
Env trimer and soluble furin at a ratio of 4:1 as previously described (18).
BG505 SOSIP proteins were isolated from cell supernatants using a 2G12
immunoaffinity column as described (10). After elution with 3M MgCl2
followed by immediate buffer exchange into Tris-buffered saline pH 8.0
(TBS), trimers were purified by SEC using a Superdex 200 16/60 column,
Mono Q ion exchange chromatography, and a second SEC purification using
a Superose 6 10/300 column (columns from GE Healthcare).

Cryo-EM data collection and processing. The Env-sCD4-17b-8ANC com-
plex was made by incubating BG505 with excess sCD4 and 17b Fab overnight
and then isolated by SEC. After incubating the BG505-sCD4-17b complex with
excess 8ANC195 Fab for two hours at 4 ˚C, the quaternary complex Env-
sCD4-17b-8ANC complex was isolated by SEC. Purified Env-sCD4-17b-8ANC
complexes were diluted to 60 μg/ml in TBS and vitrified in liquid ethane
using a Mark IV Vitrobot. Sample grids were prepared by adding 3 µL of
complex to glow discharged 400 Mesh Quantifoil ® R1.2/1.3 copper grids
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(for the 8.9 Å reconstruction) or to 400 Mesh C-FlatTM R1.2/1.3 grids (for
the 9.8 Å reconstruction). Images were recorded on a Titan Krios electron
microscope equipped with Gatan K2 Summit direct detector and an energy
filter with a slit width of 20 eV (for the 9.8 Å reconstruction only) using
SerialEM (42). For the 8.9 Å reconstruction, 10 sec exposures were divided
into 25 subframes and the dose rate was 3.8 electrons/pixel/subframe. For
the 9.8 Å reconstruction, 20.25 sec exposures were divided into 54 subframes
and the dosage rate was 3.7 electrons/pixel/subframe. After binning by 2
and motion correction, each image was 4k x 4k and 1.64 Å per pixel (8.9 Å
reconstruction) or 4k x 4k and 1.71 Å/pixel (9.8 Å reconstruction).

Both data sets were motion corrected and dose weighted using Unblur
and Summovie (43-45). Motion corrected micrographs without dose weight-
ing were used for CTF estimations. Motion corrected micrographs with dose
weighting were used for particle picking, and motion corrected micrographs
with dose weighting and restored noise power after filtering were used for
all classification and refinement processes.

Particles were picked using the SWARM method of EMAN2.1 (46) and
CTF estimations were done using CTFFIND4 (47). For the 8.9 Å reconstruction:
A total of 808 movies were collected. After motion correction and dose
weighting, CTF curves were confidently fit to beyond 6 Å in 360 micrographs;
the others were discarded. A total of 13,268 particles were picked. Particles
were classified in 2D with Relion (48), resulting in 130 2D classes. Of these,
9 classes from 6,675 particles were selected as “good” classes. For 3D classifi-
cation, the 16.8 Å Env-sCD4-17b-8ANC negative stain structure (EMDB 3086)
was used as a reference and the CH-CL domains of the Fabs were masked out;
two 3D classes were then produced. After selecting one 3D class as a “good”
class, 5,175 particles remained for 3D refinement. After 3D refinement, post
processing, particle polishing, and gold-standard FSC estimations were done
using Relion (48) following procedures in the tutorial. Density maps were low
pass filtered to 5 Å to remove noise. Local resolution estimations were done
using ResMap (29).

The 9.8 Å structure was produced in the same way with minor differ-
ences: 642 movies were collected; only 480 micrographs could be CTF fit to
beyond 6 Å; a total of 19,355 particles were picked; 11,915 were retained
after 2D classification; and 9,606 particles retained through 3D classification.

After motion correcting, dose weighting, and CTF correcting the two
data sets individually, the CTF-corrected (flipped) particles were scaled to
the same Å/pixel value and combined into a single data set of 32,623
particles. 18,476 were retained after 2D classification; and 17,013 particles
were retained through 3D classification. The resolution of a reconstruction
calculated from the combined data sets was 9.6 Å (Fig. S3C), lower than
the 8.9 Å resolution calculated for a reconstruction from the first data set.
Because combining the data sets did not improve the resolution beyond 8.9
Å, we kept the data sets separated for structural analyses.

Model building. Coordinates from crystal structures were manually
fit into cryo-EM density maps as rigid bodies using UCSF Chimera’s Fit in
Map function (49), and the complex was further refined using real-space
refinement in PHENIX (50). Coordinates used for fitting or comparisons
were gp120 from BG505 SOSIP.664 (closed conformation) (PDB 5T3X), gp41
from BG505 SOSIP.664 (closed conformation) (PDB 5CEZ or 5T3X), sCD4 (PDB
2NXY), 17b Fab (PDB 2NXY), 8ANC195 Fab (PDB 4P9M), 16.8 Å negative
stain EM structure of Env-sCD4-17b-8ANC (EMDB 3086), BG505-8ANC195
(PDB 5CJX) and X1193.c1 SOSIP.664-PGT122-35O22-VRC01 (PDB 5FYJ) closed
conformation complexes, V1V2 scaffold (PDB 5ESV), gp120 with V1V2 model
from molecular dynamics (coordinates obtained from Hironori Sato), gp120

core-sCD4-17b complex (PDB 1RZJ), gp120 core with ordered V3 loop (2QAD),
open 17b-bound KNH1144 SOSIP.681 (EMDB entry 5462; coordinates for
gp120s obtained from Sriram Subramaniam), gp120-sCD4-17b complex (PDB
2NXY), open conformation virion-bound Bal Env-sCD4 (EMD: 5455), and open
conformation virion-bound Bal Env-sCD4-17b (EMDB 5020, PDB 3DNO).

The contour levels for EM maps in this study were chosen based on
local resolution estimations and fitted coordinates. For rigid body docking,
model building, and coordinates visualization, we chose a contour level such
that the gp41 HR1 α-helices exactly fit into the density. However, density
for the D2 domain of sCD4 could not be visualized at this high contour
level. We lowered the contour level such that density for the D2 domain of
sCD4 appeared and used this lower contour level to interpret the density
corresponding to the rearranged V1V2 loop region. For determining the
rotation and translation relating the gp120s in the closed and partially-open
conformations, the transformation relating gp120 α-helices at positions 60-
63, 99-113, 335-349, and 475-483 was calculated using TM-align (51). The
corresponding screw transformation was calculated according to (52) and
visualized using AntibodyDatabase (53).

Negative stain EM. The BG505-△V1V2 -sCD4-17b-8ANC195 quaternary
complex was made as described above for the Env-sCD4-17b-8ANC complex.
Purified complexes were diluted to 10 ug/ml in TBS immediately before
adding 3 µl to a glow discharged ultrathin C film on holey carbon support
film, 400 mesh, Cu grids (Ted Pella) and staining with uranyl acetate. Data
were collected using a FEI Tecnai T12 transmission electron microscope
operating at 120 keV with a Gatan Ultrascan 2k x 2k CCD camera. Each
image was collected using a 0.5 s exposure at ∼1 µm defocus and 42,000x
magnification resulting in 2.5 Å per pixel. For the BG505-△V1V2-sCD4-17b-
8ANC195 complex, a total of 7,251 particles were picked and CTF corrected

using EMAN2.1 (46). Reference-free 2D classification was performed using
Relion (48).
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